Lesson#3
Proofs of Triple Angle Identities
Triple Angle Identities
1) sin3α=3 sinα−4 sin^3 α
2) cos 3α=4 cos^3 α−3 cosα
3) tan3α=(3 tanα−tan^3 α)/(1−3tan^2 α)
Math.Ex.10.3, Part3-10.3
Prove the following identity:
sin3α=3 sinα−4 sin^3 α
cos 3α=4 cos^3 α−3 cosα
tan3α=(3 tanα−tan^3 α)/(1−3tan^2 α)
Trigonometric Identities
Chapter No 10
Exercise No 10.3
Mathematics
part 1
Proofs of Triple Angle Identities
Triple Angle Identities
1) sin3α=3 sinα−4 sin^3 α
2) cos 3α=4 cos^3 α−3 cosα
3) tan3α=(3 tanα−tan^3 α)/(1−3tan^2 α)
Math.Ex.10.3, Part3-10.3
Prove the following identity:
sin3α=3 sinα−4 sin^3 α
cos 3α=4 cos^3 α−3 cosα
tan3α=(3 tanα−tan^3 α)/(1−3tan^2 α)
Trigonometric Identities
Chapter No 10
Exercise No 10.3
Mathematics
part 1
Category
📚
Learning