Extreme Journey to the center of the Earth - Scientific drilling into the Earth is a way for scientists to probe the Earth's sediments, crust, and upper mantle. In addition to rock samples, drilling technology can unearth samples of connate fluids and of the subsurface biosphere, mostly microbial life, preserved in drilled samples. Most of the technology used for drilling come from advances in the oil and gas industry. Scientific drilling is carried out on land by the International Continental Scientific Drilling Program (ICDP) and at sea by the Integrated Ocean Drilling Program (IODP). Scientific drilling on the continents includes drilling down into solid ground as well as drilling from small boats on lakes. Sampling thick glaciers and ice sheets to obtain ice cores is related but will not be described further here.
Like probes sent into outer space, scientific drilling is a technology used to obtain samples from places that people cannot reach. Human beings have descended as deep as 2,080 m (6,822 ft) in Voronya Cave, the world's deepest known cave, located in the Caucasus mountains of the country of Georgia. Gold miners in South Africa regularly go deeper than 3,400 m, but no human has ever descended to greater depths than this below the Earth's solid surface. As depth increases into the Earth, temperature and pressure rise. Temperatures in the crust increase about 15°C per kilometer, making it impossible for humans to exist at depths greater than several kilometers, even if it was somehow possible to keep shafts open in spite of the tremendous pressure.
Scientific drilling is interdisciplinary and international in scope. Individual scientists cannot generally undertake scientific drilling projects alone. Teamwork between scientists, engineers, and administrators is often required for success in planning and in carrying out a drilling project, analyzing the samples, and interpreting and publishing the results in scientific journals.
Humans have reached the moon and are planning to return samples from Mars, but when it comes to exploring the land deep beneath our feet, we have only scratched the surface of our planet.
This may be about to change with a $1 billion mission to drill 6 km (3.7 miles) beneath the seafloor to reach the Earth's mantle -- a 3000 km-thick layer of slowly deforming rock between the crust and the core which makes up the majority of our planet -- and bring back the first ever fresh samples.
It could help answer some of our biggest questions about the origins and evolution of Earth itself, with almost all of the sea floor and continents that make up the Earth´s surface originating from the mantle.
Geologists involved in the project are already comparing it to the Apollo Moon missions in terms of the value of the samples it could yield.
Music: Land of Giants by Dhruva Aliman
https://dhruvaaliman.bandcamp.com/album/road-of-fortunes
http://www.dhruvaaliman.com/
Like probes sent into outer space, scientific drilling is a technology used to obtain samples from places that people cannot reach. Human beings have descended as deep as 2,080 m (6,822 ft) in Voronya Cave, the world's deepest known cave, located in the Caucasus mountains of the country of Georgia. Gold miners in South Africa regularly go deeper than 3,400 m, but no human has ever descended to greater depths than this below the Earth's solid surface. As depth increases into the Earth, temperature and pressure rise. Temperatures in the crust increase about 15°C per kilometer, making it impossible for humans to exist at depths greater than several kilometers, even if it was somehow possible to keep shafts open in spite of the tremendous pressure.
Scientific drilling is interdisciplinary and international in scope. Individual scientists cannot generally undertake scientific drilling projects alone. Teamwork between scientists, engineers, and administrators is often required for success in planning and in carrying out a drilling project, analyzing the samples, and interpreting and publishing the results in scientific journals.
Humans have reached the moon and are planning to return samples from Mars, but when it comes to exploring the land deep beneath our feet, we have only scratched the surface of our planet.
This may be about to change with a $1 billion mission to drill 6 km (3.7 miles) beneath the seafloor to reach the Earth's mantle -- a 3000 km-thick layer of slowly deforming rock between the crust and the core which makes up the majority of our planet -- and bring back the first ever fresh samples.
It could help answer some of our biggest questions about the origins and evolution of Earth itself, with almost all of the sea floor and continents that make up the Earth´s surface originating from the mantle.
Geologists involved in the project are already comparing it to the Apollo Moon missions in terms of the value of the samples it could yield.
Music: Land of Giants by Dhruva Aliman
https://dhruvaaliman.bandcamp.com/album/road-of-fortunes
http://www.dhruvaaliman.com/
Category
📚
Learning