Data mining (the analysis step of the Knowledge Discovery in Databases process, or KDD), an interdisciplinary subfield of computer science, is the computational process of discovering patterns in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems. The overall goal of the data mining process is to extr information from a data set and transform it into an understandable structure for further use. Aside from the raw analysis step, it involves database and data management aspects, data preprocessing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating.\r
The term is a buzzword, and is frequently misused to mean any form of large-scale data or information processing (collection, extrion, warehousing, analysis, and statistics) but is also generalized to any kind of computer decision support system, including artificial intelligence, machine learning, and business intelligence. In the proper use of the word, the key term is discovery[citation needed], commonly defined as detecting something new. Even the popular book Data mining: Prical machine learning tools and techniques with Java(which covers mostly machine learning material) was originally to be named just Prical machine learning, and the term data mining was only added for marketing reasons. Often the more general terms (large scale) data analysis, or analytics -- or when referring to ual methods, artificial intelligence and machine learning -- are more appropriate.\r
The ual data mining task is the automatic or semi-automatic analysis of large quantities of data to extr previously unknown interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection) and dependencies (association rule mining). This usually involves using database techniques such as spatial indices. These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting are part of the data mining step, but do belong to the overall KDD process as additional steps.
The term is a buzzword, and is frequently misused to mean any form of large-scale data or information processing (collection, extrion, warehousing, analysis, and statistics) but is also generalized to any kind of computer decision support system, including artificial intelligence, machine learning, and business intelligence. In the proper use of the word, the key term is discovery[citation needed], commonly defined as detecting something new. Even the popular book Data mining: Prical machine learning tools and techniques with Java(which covers mostly machine learning material) was originally to be named just Prical machine learning, and the term data mining was only added for marketing reasons. Often the more general terms (large scale) data analysis, or analytics -- or when referring to ual methods, artificial intelligence and machine learning -- are more appropriate.\r
The ual data mining task is the automatic or semi-automatic analysis of large quantities of data to extr previously unknown interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection) and dependencies (association rule mining). This usually involves using database techniques such as spatial indices. These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting are part of the data mining step, but do belong to the overall KDD process as additional steps.
Category
📺
TV